Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.350
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2320687121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557179

RESUMO

The Mediterranean Sea is a marine biodiversity hotspot already affected by climate-driven biodiversity collapses. Its highly endemic fauna is at further risk if global warming triggers an invasion of tropical Atlantic species. Here, we combine modern species occurrences with a unique paleorecord from the Last Interglacial (135 to 116 ka), a conservative analog of future climate, to model the future distribution of an exemplary subset of tropical West African mollusks, currently separated from the Mediterranean by cold upwelling off north-west Africa. We show that, already under an intermediate climate scenario (RCP 4.5) by 2050, climatic connectivity along north-west Africa may allow tropical species to colonize a by then largely environmentally suitable Mediterranean. The worst-case scenario RCP 8.5 leads to a fully tropicalized Mediterranean by 2100. The tropical Atlantic invasion will add to the ongoing Indo-Pacific invasion through the Suez Canal, irreversibly transforming the entire Mediterranean into a novel ecosystem unprecedented in human history.


Assuntos
Biodiversidade , Ecossistema , Humanos , Mar Mediterrâneo , Aquecimento Global , África Ocidental
2.
Sci Rep ; 14(1): 7785, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565615

RESUMO

The golden coral Savalia savaglia is a long-living ecosystem engineer of Mediterranean circalittoral assemblages, able to induce necrosis of gorgonians' and black corals' coenenchyme and grow on their cleaned organic skeleton. Despite its rarity, in Boka Kotorska Bay (Montenegro) a shallow population of more than 1000 colonies was recorded close to underwater freshwater springs, which create very peculiar environmental conditions. In this context, the species was extremely abundant at two sites, while gorgonians were rare. The abundance and size of S. savaglia colonies and the diversity of the entire benthic assemblage were investigated by photographic sampling in a depth range of 0-35 m. Several living fragments of S. savaglia spread on the sea floor and small settled colonies (< 5 cm high) suggested a high incidence of asexual reproduction and a non-parasitic behaviour of this population. This was confirmed by studying thin sections of the basal portion of the trunk where the central core, generally represented by the remains of the gorgonian host skeleton, was lacking. The S. savaglia population of Boka Kotorska Bay forms the unique Mediterranean assemblage of the species deserving the definition of animal forest. Recently, temporary mitigation measures for anthropogenic impact were issued by the Government of Montenegro. Nevertheless, due to the importance of the sites the establishment of a permanent Marine Protected Area is strongly recommended.


Assuntos
Antozoários , Ecossistema , Animais , Montenegro , Baías , Mar Mediterrâneo
3.
Glob Chang Biol ; 30(4): e17249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572713

RESUMO

Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.


Assuntos
Espécies Introduzidas , Alga Marinha , Mar Mediterrâneo , Ecossistema , Temperatura
4.
Rocz Panstw Zakl Hig ; 75(1): 45-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586867

RESUMO

Background: There is growing strong scientific evidence over the past few decades that the Mediterranean diet (MD) has protective effects on cardiometabolic health. Objective: This study aimed to assess MD adherence and its association with sociodemographic and lifestyle factors among women living in two Moroccan provinces, El Jadida and Tetouan, located at different distances from the Mediterranean Sea. Material and methods: It is a cross-sectional study involved 355 subjects of which 55.8% reside in the province of El Jadida, and data on socio-demographic characteristics, lifestyle, cardiovascular risks, medical history and of food frequency consumption were collected. Compliance with the MD was assessed with a simplified MD adherence score based on the weekly frequency of consumption of eight food groups. Results: The overall mean Simplified Mediterranean Diet Score was 4.37 ± 1.47 with inadequate compliance in 55.2% of the sample. No significant association was found between adherence to MD and geographic, socio-demographic, lifestyle or the major cardiovascular risk factors. However, the participants do not comply with half of the recommendations based on the Mediterranean diet pyramid. The lowest level of compliance was observed for olive oil, followed by sweets, eggs, potatoes, fruits, red meat, vegetables, legumes, olives, nuts and seeds. The increased contribution of sugars, dairy products and meat to the overall food intake is significant in the category with high adherence to MD. Conclusion: The study data indicate that Mediterranean Diet is far from being a global pattern in this Moroccan population. The study draws attention to the need for a promoting intervention to maintain this pattern as the original diet in the region.


Assuntos
Dieta Mediterrânea , Humanos , Feminino , Estudos Transversais , Mar Mediterrâneo , Verduras , Estilo de Vida
5.
Mar Environ Res ; 197: 106478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594093

RESUMO

Increasing impacts of both fisheries and climate change have resulted in shifts in the structure and functioning of marine communities. One recurrent observation is the rise of cephalopods as fish recede. This is generally attributed to the removal of main predators and competitors by fishing, while mechanistic evidence is still lacking. In addition, climate change may influence cephalopods due to their high environmental sensitivity. We aim to unveil the effects of different anthropogenic and environmental drivers at different scales focusing on the cephalopod community of the Western Mediterranean Sea. We investigate several ecological indicators offering a wide range of information about their ecology, and statistically relating them with environmental, biotic and fisheries drivers. Our results highlight non-linear changes of indicators along with spatial differences in their responses. Overall, the environment drivers have greater effects than biotic and local human impacts with contrasting effects of temperature across the geographic gradient. We conclude that cephalopods may be impacted by climate change in the future while not necessary through positive warming influence, which should make us cautious when referring to them as generalized winners of current changes.


Assuntos
Cefalópodes , Ecossistema , Animais , Humanos , Cefalópodes/fisiologia , Mar Mediterrâneo , Mudança Climática , Pesqueiros
6.
PLoS One ; 19(4): e0300553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640124

RESUMO

The sea crossing from Libya to Italy is one of the world's most dangerous and politically contentious migration routes, and yet over half a million people have attempted the crossing since 2014. Leveraging data on aggregate migration flows and individual migration incidents, we estimate how migrants and smugglers have reacted to changes in the border enforcement regime, namely the rise in interceptions by the Libyan Coast Guard starting in 2017 and the corresponding decrease in the probability of rescue to Europe. We find support for a deterrence effect in which attempted crossings along the Central Mediterranean route declined, and a diversion effect in which some migrants substituted to the Western Mediterranean route. At the same time, smugglers adapted their tactics. Using a strategic model of the smuggler's choice of boat size, we estimate how smugglers trade off between the short-run payoffs to launching overcrowded boats and the long-run costs of making less successful crossing attempts under different levels of enforcement. Taken together, these analyses shed light on how the integration of incident- and flow-level datasets can inform ongoing migration policy debates and identify potential consequences of changing enforcement regimes.


Assuntos
Migrantes , Humanos , Mar Mediterrâneo , Europa (Continente) , Itália , Líbia
7.
Sci Rep ; 14(1): 8360, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600271

RESUMO

Seagrasses are undergoing widespread loss due to anthropogenic pressure and climate change. Since 1960, the Mediterranean seascape lost 13-50% of the areal extent of its dominant and endemic seagrass-Posidonia oceanica, which regulates its ecosystem. Many conservation and restoration projects failed due to poor site selection and lack of long-term monitoring. Here, we present a fast and efficient operational approach based on a deep-learning artificial intelligence model using Sentinel-2 data to map the spatial extent of the meadows, enabling short and long-term monitoring, and identifying the impacts of natural and human-induced stressors and changes at different timescales. We apply ACOLITE atmospheric correction to the satellite data and use the output to train the model along with the ancillary data and therefore, map the extent of the meadows. We apply noise-removing filters to enhance the map quality. We obtain 74-92% of overall accuracy, 72-91% of user's accuracy, and 81-92% of producer's accuracy, where high accuracies are observed at 0-25 m depth. Our model is easily adaptable to other regions and can produce maps in in-situ data-scarce regions, providing a first-hand overview. Our approach can be a support to the Mediterranean Posidonia Network, which brings together different stakeholders such as authorities, scientists, international environmental organizations, professionals including yachting agents and marinas from the Mediterranean countries to protect all P. oceanica meadows in the Mediterranean Sea by 2030 and increase each country's capability to protect these meadows by providing accurate and up-to-date maps to prevent its future degradation.


Assuntos
Alismatales , Ecossistema , Humanos , Efeitos Antropogênicos , Mudança Climática , Inteligência Artificial , Tecnologia de Sensoriamento Remoto , Mar Mediterrâneo
8.
Glob Chang Biol ; 30(4): e17272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623753

RESUMO

Native biodiversity loss and invasions by nonindigenous species (NIS) have massively altered ecosystems worldwide, but trajectories of taxonomic and functional reorganization remain poorly understood due to the scarcity of long-term data. Where ecological time series are available, their temporal coverage is often shorter than the history of anthropogenic changes, posing the risk of drawing misleading conclusions on systems' current states and future development. Focusing on the Eastern Mediterranean Sea, a region affected by massive biological invasions and the largest climate change-driven collapse of native marine biodiversity ever documented, we followed the taxonomic and functional evolution of an emerging "novel ecosystem", using a unique dataset on shelled mollusks sampled in 2005-2022 on the Israeli shelf. To quantify the alteration of observed assemblages relative to historical times, we also analyzed decades- to centuries-old ecological baselines reconstructed from radiometrically dated death assemblages, time-averaged accumulations of shells on the seafloor that constitute natural archives of past community states. Against expectations, we found no major loss of native biodiversity in the past two decades, suggesting that its collapse had occurred even earlier than 2005. Instead, assemblage taxonomic and functional richness increased, reflecting the diversification of NIS whose trait structure was, and has remained, different from the native one. The comparison with the death assemblage, however, revealed that modern assemblages are taxonomically and functionally much impoverished compared to historical communities. This implies that NIS did not compensate for the functional loss of native taxa, and that even the most complete observational dataset available for the region represents a shifted baseline that does not reflect the actual magnitude of anthropogenic changes. While highlighting the great value of observational time series, our results call for the integration of multiple information sources on past ecosystem states to better understand patterns of biodiversity loss in the Anthropocene.


Assuntos
Biodiversidade , Ecossistema , Mar Mediterrâneo , Fatores de Tempo , Mudança Climática
9.
Sci Rep ; 14(1): 6669, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509139

RESUMO

The ocean is dynamically changing due to the influence of climate processes and human activities. The construction of the Suez Canal in the late nineteenth century opened the Pandora's box by facilitating the dispersal of Red Sea species in the Mediterranean Sea. In this study, we developed an open-source spatio-temporal numerical analysis framework to decodify the complex spread of Mediterranean non-indigenous fish species (NIS) that entered through the Suez Canal. We utilized 772 historical detection records of 130 NIS to disentangle their dynamic spread through space and time. The results indicated that species follow a north-westward trajectory with an average expansion time step of 2.5 years. Additionally, we estimated the overall time for a NIS to reach the Central Mediterranean Sea from the Suez Canal at approximately 22 years. Based on the analysis, more than half of the introduced fishes have been established in less than 10 years. Finally, we proceeded in the cross-validation of our results using actual spread patterns of invasive fishes of the Mediterranean Sea, resulting up to 90% of temporal and spatial agreement. The methodology and the findings presented herein may contribute to management initiatives in highly invaded regions around the globe.


Assuntos
Meio Ambiente , Peixes , Animais , Humanos , Mar Mediterrâneo , Oceano Índico , Espécies Introduzidas , Ecossistema
10.
J Environ Manage ; 357: 120744, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552518

RESUMO

Restoration of coastal ecosystems, particularly those dominated by seagrasses, has become a priority to recover the important ecosystem services they provide. However, assessing restoration outcomes as a success or failure remains still difficult, probably due to the unique features of seagrass species and the wide portfolio of practices used on transplanting actions. Here, several traits (maximum leaf length, number of leaves, leaf growth rate per shoot, and leaf elemental carbon and nitrogen contents) of transplanted seagrass Posidonia oceanica were compared to reference meadows in five sites of Western Mediterranean Sea in which restoration were completed in different times. Results have evidenced the resilience of transplanted P. oceanica shoots within a few years since restoration, as traits between treatments changed depending on the elapsed time since settlement. The highlighted stability of the restoration time effect suggests that the recovery of the plants is expected in four years after transplanting.


Assuntos
Alismatales , Resiliência Psicológica , Ecossistema , Mar Mediterrâneo
11.
Sci Rep ; 14(1): 5888, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467723

RESUMO

Among marine ecosystems globally, those in the Mediterranean Sea, are facing many threats. New technologies are crucial for enhancing our understanding of marine habitats and ecosystems, which can be complex and resource-intensive to analyse using traditional techniques. We tested, for the first time, an integrated multi-platform approach for mapping the coastal benthic habitat in the Civitavecchia (northern Latium, Italy) coastal area. This approach includes the use of an Unmanned Surface Vehicle (USV), a Remote Operated Vehicle (ROV), and in situ measurements of ecosystem functionality. The echosounder data allowed us to reconstruct the distribution of bottom types, as well as the canopy height and coverage of the seagrass Posidonia oceanica. Our study further involved assessing the respiration (Rd) and net primary production (NCP) rates of P. oceanica and its associated community through in situ benthic chamber incubation. By combining these findings with the results of USV surveys, we were able to develop a preliminary spatial distribution model for P. oceanica primary production (PP-SDM). The P. oceanica PP-SDM was applied between the depths of 8 and 10 m in the studied area and the obtained results showed similarities with other sites in the Mediterranean Sea. Though in the early stages, our results highlight the significance of multi-platform observation data for a thorough exploration of marine ecosystems, emphasizing their utility in forecasting biogeochemical processes in the marine environment.


Assuntos
Alismatales , Ecossistema , Mar Mediterrâneo , Itália
12.
BMC Ecol Evol ; 24(1): 31, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462619

RESUMO

The garfish Belone belone represents the only valid endemic Belone species for the Mediterranean Sea and the eastern Atlantic Ocean. It shows a wide global distribution range, with a high commercial value and ecological relevance in the pelagic domain. Despite this, there needs to be more knowledge regarding the otoliths of this species, with the total absence of descriptions regarding asterisci and lapilli from Mediterranean populations and a lack of studies on the reliability of shape analysis on its sagittae. The present paper aims to provide the first main contours description of the three otoliths pairs from a Mediterranean population, providing an accurate investigation of morphology, morphometry, and intra-specific variability of sagittae, lapilli, and asterisci. Results showed (i) the absence of directional bilateral asymmetry and sexual asymmetry for the three otoliths pairs, (ii) a different morphology and morphometry of sagittae, lapilli and asterisci than those described in the literature, and (iii) an enhanced variability between sagittae morphometry and shape between the three investigated size classes. All these data confirmed the reliability of the studied species of shape analysis, showing a geographical and size-related variability of otoliths features probably related to genetics, environmental conditions, and life habits variations.


Assuntos
Beloniformes , Membrana dos Otólitos , Animais , Mar Mediterrâneo , Membrana dos Otólitos/anatomia & histologia , Reprodutibilidade dos Testes , Sáculo e Utrículo
13.
PLoS One ; 19(3): e0289999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517868

RESUMO

Understanding how environmental factors affect species distribution is crucial for the conservation and management of marine organisms, especially in the face of global changes. Whiting (Merlangius merlangus) is a demersal cold-temperate fish, considered a 'relict species' in the Adriatic Sea. Despite its significance to commercial fisheries in the region, the specific drivers behind its spatial and temporal patterns have not been thoroughly examined. Here, we fitted a set of Generalized Linear Mixed Effects Models to data collected in the Northern and Central Adriatic from 1999 to 2019 during the Mediterranean International Trawl Survey to investigate the potential influence of depth, seafloor temperature and seafloor dissolved oxygen on the annual biomass density and spatial distribution of whiting in the spring-summer season. Our results showed that depth, and to a lesser degree temperature and oxygen, are important predictors of whiting distribution in this period, with preferences for depths of ~ 45 m, temperature of ~ 15.4°C and dissolved oxygen > 5.5 ml L-1. We predicted a persistent core area of distribution in front of the Po River Delta, in the Northern Adriatic Sea, while the density progressively declined towards the Central and Southern Adriatic Sea along the Italian coast. Additionally, the temporal trend exhibited high fluctuations over the years, occurring in cycles of 3 to 4 years. Finally, by comparing the biomass density estimates obtained under optimal conditions with those derived from the actual values for each variable, our analysis revealed that temperature had a pronounced and general impact on biomass density in the northern survey area (predictions revealed a density reduction of approximately two-thirds), while oxygen displayed a minor and more localized influence. This work deepens the current knowledge about the ecology of whiting in the Adriatic Sea and provides support for the conservation and management of this species.


Assuntos
Gadiformes , Animais , Peixes , Temperatura , Temperatura Baixa , Oxigênio , Mar Mediterrâneo
14.
Mar Environ Res ; 197: 106468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537361

RESUMO

Chondrichthyans (sharks, rays, and chimaeras) are highly susceptible to the impacts of fisheries due to their vulnerable life-history traits. Over the last 100 years, several cases of local extinction have been documented in heavily fished areas across the Mediterranean Sea. In the Strait of Sicily (SoS), one of the main demersal fishing grounds of the Mediterranean, chondrichthyans constitute a significant component of both commercial and discarded bycatch. In this area, the lack of long-term data series on these species hinders our ability to fully comprehend the extent of changes due to both overfishing and climate variations. Here we aim to use historical data from the end of the 19th century, provided by Döderlein, to uncover evidence of long-term changes in the occurrence and diversity of these fishes. We employ a semi-quantitative approach to compare past data with recent frequency of occurrence estimates, to improve our ability to propose management advice. We report a decline in both the number of species and the frequency of occurrence of sharks and ray species in the study region over the past 150 years. Our findings shed light on the current status of sharks and rays compared to the historical data from the 19th century and highlight the urgent need to develop management strategies to mitigate the impact of harvesting on these vulnerable species.


Assuntos
Conservação dos Recursos Naturais , Tubarões , Animais , Pesqueiros , Mar Mediterrâneo , Clima , Ecossistema
15.
Mar Environ Res ; 197: 106428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492503

RESUMO

The critically endangered endemic bivalve Pinna nobilis from the Mediterranean Sea suffered a sudden population decline after a mass mortality event in early autumn 2016. Conservation efforts aimed at preventing extinction included safeguarding resistant individuals and implementing a breeding plan to contribute to the repopulation of the species. This study utilized a model combining Lagrangian dispersion and connectivity analyses to pinpoint optimal restocking sites in the Western Mediterranean. Our approach allowed to identify locations capable of sustaining and generating larvae for broader repopulation in key areas of the Western Mediterranean Sea prior to the mass mortality event. Six important repopulation locations from Murcia, Valencia and Balearic Islands were selected for reintroduction efforts. The results obtained in this study show how the network could be self-sufficient and able to self-replenish itself of recruits. Overall, our work can be used to direct the reintroduction of resistant animals in the Western Mediterranean Sea.


Assuntos
Bivalves , Humanos , Animais , Mar Mediterrâneo , Espanha
16.
Environ Pollut ; 348: 123814, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499170

RESUMO

In the coastal environment, a large amount of microplastics (MPs) can accumulate in the sediments of seagrass beds. However, the potential impact these pollutants have on seagrasses and associated organisms is currently unknown. In this study, we investigated the differences in MPs abundance and composition (i.e., shape, colour and polymer type) in marine sediments collected at different depths (-5 m, -15 m, -20 m) at two sites characterized by the presence of Posidonia oceanica meadows and at one unvegetated site. In the vegetated sites, sediment samples were collected respectively above and below the upper and lower limits of the meadow (-5 m and -20 m), out of the P. oceanica meadow, and in the central portion of the meadow (-15 m). By focusing on the central part of the meadow, we investigated if the structural features (i.e. shoots density and leaf surface) can affect the amount of MPs retained within the underlying sediment and if these, in turn, can affect the associated benthic communities. Results showed that the number of MPs retained by P. oceanica meadows was higher than that found at the unvegetated site, showing also a different composition. In particular, at vegetated sites, we observed that MPs particles were more abundant within the meadow (at - 15 m), compared to the other depths, on unvegetated sediment, with a dominance of transparent fragments of polypropylene (PP). We observed that MPs entrapment by P. oceanica was accentuated by the higher shoots density, while the seagrass leaf surface did not appear to have any effect. Both the abundance and richness of macrofauna associated with P. oceanica rhizomes appear to be negatively influenced by the MPs abundance in the sediment. Overall, this study increases knowledge of the potential risks of MPs accumulation in important coastal habitats such as the Posidonia oceanica meadows.


Assuntos
Alismatales , Microplásticos , Plásticos , Meio Ambiente , Ecossistema , Alismatales/química , Mar Mediterrâneo
17.
Mar Environ Res ; 197: 106453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522122

RESUMO

The Western Mediterranean fisheries significantly contribute to the regional blue economy, despite evidence of ongoing, widespread overexploitation of stocks. Understanding the spatial distribution and population dynamics of species is crucial for comprehending fisheries dynamics combining local and regional scales, although the underlying processes are often neglected. In this study, we aimed to (i) evaluate the seasonal and long-term spatio-temporal fluctuations of crustacean, cephalopod, and fish populations in the Western Mediterranean, (ii) determine whether these fluctuations are driven by the spatial structure of the fisheries or synchronic species fluctuations, and (iii) compare groupings according to the individual species and life history-based groups. We used dynamic factor analysis to detect underlying patterns in a Landing Per Unit Effort (LPUE) time series (2009-2020) for 23 commercially important species and 33 ports in the Western Mediterranean. To verify the spatial structure of ports and species groupings we investigated the seasonal and long-term spatio-temporal fluctuations and common LPUE trends that exhibit non-homogeneous and species-specific trends, highlighting the importance of life history, environmental and demographic preferences. Long-term trends revealed spatial segregation with a north-south gradient, demonstrating complex population structures of Western Mediterranean resources. Seasonal patterns exhibited a varying spatial aggregation based on species-port combinations. These findings can inform the Common Fishery Policy on gaps challenging their regionalisation objectives in the Mediterranean Sea. We highlight the need for a nuanced and flexible approach and a better understanding of sub-regional processes for effective management and conservation - a current challenge for global fisheries. Our LPUE approach provides insight into population dynamics and changes in regional fisheries, relevant beyond the Mediterranean Sea.


Assuntos
Pesqueiros , Peixes , Animais , Estações do Ano , Dinâmica Populacional , Mar Mediterrâneo , Ecossistema
18.
Sci Data ; 11(1): 314, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538659

RESUMO

Climate change is swiftly reshaping marine ecosystems, affecting different biological levels. Changes in thermal conditions profoundly influence ectotherms' growth, behaviour, and functions, making knowledge of species' thermal preferences (TP) crucial for understanding their responses to ongoing warming. However, obtaining this data is challenging due to limited studies, especially for deep-sea demersal and bottom-dwelling species. Here, we present the MedFaunaTP dataset, a collection of survey-based TPs for 939 Mediterranean species of fish, crustaceans, molluscs, echinoderms, cnidarians, and tunicates calculated using species abundance data obtained from the international bottom-trawl survey in the Mediterranean (MEDITS) and bottom temperature data derived from the Copernicus Monitoring Environment Marine Service. MEDITS estimates are based on species biomass indices from 27587 sampling stations, collected from 1994 to 2020, covering the northern Mediterranean Sea and spanning depths from 10 to 800 m. The MedFaunaTP dataset may serves as a valuable resource for understanding and addressing marine ecosystem ecological, conservation, and management challenges in the context of climate change and associated global warming.


Assuntos
Organismos Aquáticos , Ecossistema , Temperatura , Animais , Biomassa , Mudança Climática , Peixes/fisiologia , Mar Mediterrâneo , Moluscos
19.
Mar Pollut Bull ; 201: 116193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428047

RESUMO

Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.


Assuntos
Alismatales , Ecossistema , Pradaria , Mar Mediterrâneo , Alismatales/fisiologia , Temperatura
20.
Mar Pollut Bull ; 201: 116191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428048

RESUMO

Management of plastic litter in Marine Protected Areas (MPAs) is expensive but crucial to avoid harms to critical environments. In the present work, an open-source numerical modelling chain is proposed to estimate the seasonal pathways and fates of macro-plastics, and hence support the effective planning and implementation of sea and beach cleaning operations. The proposed approach is applied to the nearshore region that includes the MPA of Capo Milazzo (Italy). A sensitivity analysis on the influence of tides, wind, waves and river floods over the year indicates that seasonality only slightly affects the location and extension of the macro-plastic accumulation zones, and that beach cleaning operations should be performed in autumn. Instead, the influence of rivers on plastic litter distribution is crucial for the optimal planning of cleaning interventions in the coastal area.


Assuntos
Monitoramento Ambiental , Plásticos , Plásticos/análise , Estações do Ano , Vento , Rios , Resíduos/análise , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...